login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A345020
a(0) = a(1) = 1, a(n) = largest natural number m <= a(n-1) + a(n-2) where gcd(m,a(k)) = 1 for all 1 < k <= n-1.
2
1, 1, 2, 3, 5, 7, 11, 17, 23, 37, 59, 89, 139, 227, 361, 587, 947, 1531, 2477, 4007, 6481, 10487, 16963, 27449, 44393, 71837, 116227, 188063, 304289, 492343, 796627, 1288967, 2085593, 3374557, 5460139, 8834689, 14294827, 23129507, 37424333, 60553837, 97978169
OFFSET
0,3
COMMENTS
First differs from A055500 at a(14).
LINKS
EXAMPLE
a(5) = 7 because 7 is the largest number less than or equal to a(4) + a(3) = 8 which is coprime to all the previous terms of sequence.
MAPLE
A[0]:= 1:
A[1]:= 1: P:= 1:
for n from 2 to 100 do
for k from A[n-2]+A[n-1] by -1 do
if igcd(k, P) = 1 then break fi
od;
A[n]:= k;
P:= P*k;
od:
convert(A, list); # Robert Israel, Oct 23 2024
MATHEMATICA
a[0] = a[1] = 1; a[n_] := a[n] = Module[{k = a[n - 1] + a[n - 2]}, While[! AllTrue[Range[2, n - 2], CoprimeQ[a[#], k] &], k--]; k]; Array[a, 50, 0] (* Amiram Eldar, Jun 05 2021 *)
CROSSREFS
Cf. A055500.
Sequence in context: A065436 A068523 A055500 * A353505 A018058 A002379
KEYWORD
nonn
AUTHOR
Amrit Awasthi, Jun 05 2021
STATUS
approved