login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A344949 a(n) is the smallest square s > 0 such that s*(2n+1) is a triangular number. 1

%I #35 Jun 21 2021 15:09:10

%S 1,1,9,4,4,441,25,1,9,9,1,3218436,49,1089,1656369,16,16,225,46225,9,

%T 81,314721,1,12217323024,25,25,2427192623025,1,2304,199572129,121,400,

%U 81225,39727809,4,36,36,4,736164,94864,592900,4357032433168041,169,3025,3600,1

%N a(n) is the smallest square s > 0 such that s*(2n+1) is a triangular number.

%C Proof that every odd natural number 2n+1 is a triangular number divided by a square. As the number 4n + 2 is never a square, Pell's equation x^2 - (4n+2)*y^2 = 1 has solutions in integers with y != 0 for every n. It is immediate that x has to be odd. We replace x = 2b+1 and we observe that y must be then even. We replace y = 2a and it follows that b(b+1)/2 = (2n+1)*a^2. So (2n+1) is a triangular number divided by a square. Of course, for given n, there are infinitely many such pairs (b,a).

%t Table[k=1;While[!IntegerQ[Sqrt[8k^2(2n+1)+1]],k++];k^2,{n,0,22}] (* _Giorgos Kalogeropoulos_, Jun 03 2021 *)

%o (C#)

%o static BigInteger a(int n)

%o {

%o // The next lines solve the Pell equation x^2 - D y^2 = 1

%o int D = 4 * n + 2;

%o BigInteger num = 0;

%o BigInteger den = 0;

%o if (n < 0)

%o return 0;

%o BigInteger limit = (int)Math.Sqrt(D);

%o BigInteger m = 0;

%o BigInteger d = 1;

%o BigInteger a = limit;

%o BigInteger numm1 = 1;

%o num = a;

%o BigInteger denm1 = 0;

%o den = 1;

%o while (num * num - D * den * den != 1)

%o {

%o m = d * a - m;

%o d = (D - m * m) / d;

%o a = (limit + m) / d;

%o BigInteger numm2 = numm1;

%o numm1 = num;

%o BigInteger denm2 = denm1;

%o denm1 = den;

%o num = a * numm1 + numm2;

%o den = a * denm1 + denm2;

%o }

%o // The list square is computed

%o BigInteger square = (den * den) / 4;

%o return square;

%o }

%o (PARI) a(n) = my(k=1); while (!ispolygonal(k^2*(2*n+1), 3), k++); k^2; \\ _Michel Marcus_, Jun 06 2021

%o (Python)

%o from sympy.solvers.diophantine.diophantine import diop_DN

%o def A344949(n): return min(d[1]**2 for d in diop_DN(4*n+2, 1))//4 # _Chai Wah Wu_, Jun 21 2021

%Y Cf. A000217, A000290, A061782.

%K nonn

%O 0,3

%A _Mihai Prunescu_, Jun 03 2021

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 14 06:54 EDT 2024. Contains 375920 sequences. (Running on oeis4.)