Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jul 23 2021 02:43:49
%S 3,11,709,167449,88362852307,156740126985437,1172447586903041169661
%N x -> prime(x) iterated prime(n) times, evaluated at n.
%F a(n) = prime^{prime(n)}(n), with prime^{0}(n) = n and prime^{k}(n) = prime(prime^{k-1}(n)) for 1 <= k <= prime(n).
%F a(n) = prime(prime(...(n))) {prime(n) times}.
%e a(1) = prime(prime(1)) = 3.
%e a(2) = prime(prime(prime(2))) = 11.
%e a(3) = prime(prime(prime(prime(prime(3))))) = 709.
%t nterms=6;Table[Nest[Prime[#]&,n,Prime[n]],{n,nterms}]
%o (Python)
%o from sympy import prime
%o def a(n):
%o iter = pn = prime(n)
%o for i in range(1, pn): iter = prime(iter)
%o return iter
%o print([a(n) for n in range(1, 6)]) # _Michael S. Branicky_, Jun 03 2021
%o (PARI) a(n) = my(p = n); for (k=1, prime(n), p=prime(p)); p; \\ _Michel Marcus_, Jun 03 2021
%Y Cf. A000040, A058009.
%K nonn,more,hard
%O 1,1
%A _Paolo Xausa_, Jun 03 2021
%E a(7) from _Jinyuan Wang_, Jul 12 2021