login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers that are the sum of four fourth powers in ten or more ways.
6

%I #23 Jul 31 2021 18:22:29

%S 592417938,677125218,780595299,781388643,803898018,806692194,

%T 937239954,940415058,980421939,1164012003,1269819378,1355899923,

%U 1403089314,1488645939,1539221154,1599073938,1635878754,1657885698,1666044963,1701067683,1734489603,1758151458

%N Numbers that are the sum of four fourth powers in ten or more ways.

%H Sean A. Irvine, <a href="/A344928/b344928.txt">Table of n, a(n) for n = 1..2061</a>

%e 592417938 is a term because 592417938 = 6^4 + 59^4 + 65^4 + 154^4 = 7^4 + 11^4 + 20^4 + 156^4 = 10^4 + 17^4 + 17^4 + 156^4 = 12^4 + 112^4 + 115^4 + 127^4 = 15^4 + 86^4 + 107^4 + 142^4 = 21^4 + 49^4 + 70^4 + 154^4 = 25^4 + 107^4 + 112^4 + 132^4 = 26^4 + 45^4 + 71^4 + 154^4 = 28^4 + 105^4 + 112^4 + 133^4 = 63^4 + 77^4 + 112^4 + 140^4.

%o (Python)

%o from itertools import combinations_with_replacement as cwr

%o from collections import defaultdict

%o keep = defaultdict(lambda: 0)

%o power_terms = [x**4 for x in range(1, 1000)]

%o for pos in cwr(power_terms, 4):

%o tot = sum(pos)

%o keep[tot] += 1

%o rets = sorted([k for k, v in keep.items() if v >= 10])

%o for x in range(len(rets)):

%o print(rets[x])

%Y Cf. A341897, A344862, A344926, A344929, A345155.

%K nonn

%O 1,1

%A _David Consiglio, Jr._, Jun 02 2021

%E More terms from _Sean A. Irvine_, Jun 03 2021