%I #6 Jul 31 2021 18:22:10
%S 13155858,26421474,35965458,39803778,98926434,128198994,143776179,
%T 156279618,210493728,237073554,248075538,255831858,257931378,
%U 269965938,270289698,292967619,293579874,295880274,300120003,301080243,302115843,305670834,309742434,328118259
%N Numbers that are the sum of four fourth powers in eight or more ways.
%H David Consiglio, Jr., <a href="/A344924/b344924.txt">Table of n, a(n) for n = 1..100</a>
%e 13155858 is a term because 13155858 = 1^4 + 16^4 + 19^4 + 60^4 = 3^4 + 6^4 + 21^4 + 60^4 = 10^4 + 18^4 + 31^4 + 59^4 = 12^4 + 27^4 + 45^4 + 54^4 = 15^4 + 44^4 + 46^4 + 47^4 = 18^4 + 25^4 + 41^4 + 56^4 = 29^4 + 30^4 + 44^4 + 53^4 = 35^4 + 36^4 + 38^4 + 53^4.
%o (Python)
%o from itertools import combinations_with_replacement as cwr
%o from collections import defaultdict
%o keep = defaultdict(lambda: 0)
%o power_terms = [x**4 for x in range(1, 1000)]
%o for pos in cwr(power_terms, 4):
%o tot = sum(pos)
%o keep[tot] += 1
%o rets = sorted([k for k, v in keep.items() if v >= 8])
%o for x in range(len(rets)):
%o print(rets[x])
%Y Cf. A344737, A344922, A344925, A344926, A344944, A345152.
%K nonn
%O 1,1
%A _David Consiglio, Jr._, Jun 02 2021