Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jun 07 2021 04:33:59
%S 1,1,1,1,2,1,1,3,3,1,2,1,4,6,4,1,8,8,1,5,10,10,5,1,20,40,20,1,6,15,20,
%T 15,6,1,40,120,120,40,40,1,7,21,35,35,21,7,1,70,280,420,280,70,280,
%U 280,1,8,28,56,70,56,28,8,1,112,560,1120,1120,560,112,1120,2240,1120
%N Irregular triangle read by rows, Trow(n) = Seq_{k=0..n/3} Seq_{j=0..n-3*k} (n! * binomial(n - 3*k, j)) / (k!*(n - 3*k)!*3^k).
%C Consider a sequence of Pascal tetrahedrons (depending on a parameter m >= 1), where the slices of the pyramid are scaled. They are given by the e.g.f.s exp(t^m / m) * exp(t*(x + y)), which provide a sequence of bivariate polynomials in x and y, whose monomials are to be ordered in degree-lexicographic order. For m = 1 one gets A109649 (resp. A046816), for m = 2 one gets A344911 (resp. A344678), and for m = 3 the current triangle. The row sums have an unexpected interpretation in A336614 (see the link).
%H mjqxxxx, <a href="https://math.stackexchange.com/q/4164050">Proof of conjectured formulas for A336614</a>, Mathematics Stack Exchange.
%e Triangle begins:
%e [0] 1;
%e [1] 1, 1;
%e [2] 1, 2, 1;
%e [3] 1, 3, 3, 1, 2;
%e [4] 1, 4, 6, 4, 1, 8, 8;
%e [5] 1, 5, 10, 10, 5, 1, 20, 40, 20;
%e [6] 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40;
%e [7] 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280.
%e .
%e p_{6}(x, y) = x^6 + 6*x^5*y + 15*x^4*y^2 + 20*x^3*y^3 + 15*x^2*y^4 + 6*x*y^5 + y^6 + 40*x^3 + 120*x^2*y + 120*x*y^2 + 40*y^3 + 40.
%p B := (n, k) -> n!/(k!*(n - 3*k)!*(3^k)): C := n -> seq(binomial(n, j), j=0..n):
%p T := (n, k) -> B(n, k)*C(n - 3*k): seq(seq(T(n, k), k = 0..n/3), n = 0..8);
%t gf := Exp[t^3 / 3] Exp[t (x + y)]; ser := Series[gf, {t, 0, 9}];
%t P[n_] := Expand[n! Coefficient[ser, t, n]];
%t DegLexList[p_] := MonomialList[p, {x, y}, "DegreeLexicographic"] /. x->1 /. y->1;
%t Table[DegLexList[P[n]], {n, 0, 7}] // Flatten
%Y m=1: A109649, (A046816) [row sums A000244], scaling A007318 [row sums A000079].
%Y m=2: A344911, (A344678) [row sums A005425], scaling A100861 [row sums A000085].
%Y m=3: this triangle [row sums A336614], scaling A118931 [row sums A001470].
%K nonn,tabf
%O 0,5
%A _Peter Luschny_, Jun 04 2021