%I #17 Sep 05 2023 12:22:04
%S 3,2,11,7,5,29,23,19,17,13,59,53,47,43,41,37,31,107,103,101,97,89,83,
%T 79,73,71,67,61,179,173,167,163,157,151,149,139,137,131,127,113,109,
%U 271,269,263,257,251,241,239,233,229,227,223,211,199,197,193,191,181
%N Divide the primes into subsets of lengths given by successive primes, then reverse the order of terms in each subset.
%C Irregular triangle read by rows in which row n lists the next p primes in decreasing order, where p is the n-th prime, with n >= 1.
%H Harvey P. Dale, <a href="/A344891/b344891.txt">Table of n, a(n) for n = 1..1000</a>
%e Written as an irregular triangle in which row lengths give A000040 the sequence begins:
%e 3, 2;
%e 11, 7, 5;
%e 29, 23, 19, 17, 13;
%e 59, 53, 47, 43, 41, 37, 31;
%e 107, 103, 101, 97, 89, 83, 79, 73, 71, 67, 61;
%e 179, 173, 167, 163, 157, 151, 149, 139, 137, 131, 127, 113, 109;
%e ...
%t Module[{nn=10,p},p=Total[Prime[Range[nn]]];Flatten[Reverse/@TakeList[ Prime[ Range[ p]],Prime[Range[nn]]]]] (* _Harvey P. Dale_, Sep 14 2022 *)
%Y Right border gives A180302.
%Y Row lengths give A000040.
%Y Row products give A119645.
%Y Row sums give A034958.
%Y Cf. A343809.
%K nonn,tabf
%O 1,1
%A _Paolo Xausa_, Jun 01 2021