login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows. T(n,k) is the number of n X n matrices over GF(2) whose characteristic polynomial is a product of k distinct squarefree irreducible factors.
0

%I #29 Jul 21 2021 09:26:59

%S 1,0,2,0,2,6,0,48,112,0,4032,11520,6720,0,1935360,4952064,2856960,0,

%T 2879815680,9558687744,7871496192,0,23222833643520,66748107718656,

%U 60247322394624,15604761231360,0,629183972848435200,2137709262359494656,2101670528396820480,465681743169454080

%N Irregular triangle read by rows. T(n,k) is the number of n X n matrices over GF(2) whose characteristic polynomial is a product of k distinct squarefree irreducible factors.

%H Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

%F Sum_{n>=0} Sum_{k>=0} T(n,k)*y^k*x^n/A002884(n) = Product_{d>=1} (1 + y*x^d/(2^d-1)^A001037(d).

%e 1;

%e 0, 2;

%e 0, 2, 6;

%e 0, 48, 112;

%e 0, 4032, 11520, 6720;

%e 0, 1935360, 4952064, 2856960;

%e 0, 2879815680, 9558687744, 7871496192;

%e 0, 23222833643520, 66748107718656, 60247322394624, 15604761231360;

%t nn = 8; A001037 = Table[1/n Sum[MoebiusMu[n/d] 2^d, {d, Divisors[n]}], {n, 1, nn}];Prepend[Drop[Map[Prepend[#, 0] &,Map[Select[#, # > 0 &] &,Table[Product[2^n - 2^i, {i, 0, n - 1}], {n, 0,nn}] CoefficientList[Series[Product[(1 + v u^i/(2^i - 1))^A001037[[i]], {i, 1, nn}], {u, 0, nn}], {u, v}]]], 1], {1}] // Grid

%Y Cf. A002884, A001037, A345463 (column k=1), A346164 (row sums).

%K nonn,tabf

%O 0,3

%A _Geoffrey Critzer_, Jul 12 2021