login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct prime factors of n^n+1.
5

%I #39 Sep 27 2024 07:50:10

%S 1,1,1,2,1,3,3,3,3,4,3,6,4,5,5,6,2,3,7,5,3,6,4,8,6,7,5,11,6,7,10,7,4,

%T 11,6,13,5,7,7,8,9,6,10,8,8,14,8,10,6,7,10,11,5,8,14,11,7,13,13,9,12,

%U 8,7,18,4,12,8,7,7,16,9,8,12,4,8,24,7,9,14,7,5,12,6,12,8,13,10,12,10,6,23,15,6,9,11,16,3,8,17,23,7

%N Number of distinct prime factors of n^n+1.

%H Amiram Eldar, <a href="/A344869/b344869.txt">Table of n, a(n) for n = 0..148</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiNumberoftheFirstKind.html">Sierpinski Number of the First Kind</a>.

%F a(n) = A001221(A014566(n)).

%t a[0] = 1; a[n_] := PrimeNu[n^n + 1]; Array[a, 45, 0] (* _Amiram Eldar_, May 31 2021 *)

%o (PARI) a(n) = omega(n^n+1);

%o (Magma) [#PrimeDivisors(n^n+1): n in [0..100]];

%Y Cf. A001221, A014566, A085723, A128428, A344859, A344870.

%K nonn

%O 0,4

%A _Seiichi Manyama_, May 31 2021

%E a(67)-a(79) from _Jon E. Schoenfield_, May 31 2021

%E a(80)-a(100) from _Seiichi Manyama_, May 31 2021