Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 12 2021 06:05:37
%S 0,0,2,0,2,9,2,0,5,14,2,20,2,17,19,0,2,31,2,27,26,25,2,45,7,30,14,49,
%T 2,57,2,0,37,38,34,83,2,41,44,75,2,76,2,52,69,49,2,92,9,69,55,59,2,93,
%U 62,72,62,62,2,153,2,65,77,0,59,133,2,110,73,124,2,132,2,78,100,84,75,156,2,122,41,86,2,176,74,89
%N a(n) = sigma(n) - A011772(n).
%H Antti Karttunen, <a href="/A344765/b344765.txt">Table of n, a(n) for n = 1..16384</a>
%H Antti Karttunen, <a href="/A344765/a344765.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(n) = A000203(n) - A011772(n).
%F a(n) = A001065(n) + A344763(n).
%F a(n) = Sum_{d|n} A344768(d).
%F a(n) = A344769(n) - A294898(n).
%t A011772[n_] := Module[{m = 1}, While[Not[IntegerQ[m(m+1)/(2n)]], m++]; m];
%t a[n_] := DivisorSigma[1, n] - A011772[n];
%t Array[a, 100] (* _Jean-François Alcover_, Jun 12 2021 *)
%o (PARI) A344765(n) = (sigma(n) - A011772(n));
%Y Cf. A000203, A001065, A011772, A294898, A344763, A344766, A344768 (Möbius transform), A344769.
%K nonn
%O 1,3
%A _Antti Karttunen_, May 30 2021