%I #23 Jun 17 2022 16:03:12
%S 0,-1,1,-3,1,3,1,-7,1,6,1,4,1,7,10,-15,1,10,1,5,15,11,1,9,1,14,1,21,1,
%T 15,1,-31,22,18,21,28,1,19,27,25,1,22,1,12,36,23,1,16,1,26,34,13,1,27,
%U 45,8,39,30,1,45,1,31,36,-63,40,55,1,52,46,50,1,9,1,38,51,20,56,66,1,16,1,42,1,36,51,43,58,56,1,55
%N a(n) = n - A011772(n).
%H Antti Karttunen, <a href="/A344763/b344763.txt">Table of n, a(n) for n = 1..16383</a>
%H Antti Karttunen, <a href="/A344763/a344763.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%F a(n) = n - A011772(n).
%F a(n) = A344765(n) - A001065(n).
%F a(2^k) = 1-2^k. - _Chai Wah Wu_, Jun 15 2022
%t A011772[n_] := Module[{m = 1}, While[!IntegerQ[(m(m+1))/(2n)], m++]; m];
%t a[n_] := n - A011772[n];
%t Array[a, 100] (* _Jean-François Alcover_, Jun 12 2021 *)
%o (PARI) A344763(n) = (n-A011772(n));
%o (Python)
%o from sympy.ntheory.modular import crt
%o from sympy import factorint
%o from math import prod
%o from itertools import combinations
%o def A344763(n):
%o plist = tuple(p**q for p, q in factorint(2*n).items())
%o return 1-n if len(plist) == 1 else n-int(min(min(crt((m,2*n//m),(0,-1))[0],crt((2*n//m,m),(0,-1))[0]) for m in (prod(d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l)))) # _Chai Wah Wu_, Jun 15 2022
%Y Cf. A001065, A011772, A344764, A344765, A344769.
%K sign
%O 1,4
%A _Antti Karttunen_, May 30 2021