login
A344716
Decimal expansion of (gamma + log(4/Pi))/2, where gamma is Euler's constant.
1
4, 0, 9, 3, 9, 0, 0, 7, 0, 0, 8, 6, 0, 1, 1, 6, 5, 2, 6, 4, 8, 7, 7, 4, 4, 9, 0, 8, 2, 2, 8, 4, 8, 4, 2, 7, 7, 7, 2, 9, 3, 2, 3, 9, 5, 8, 7, 2, 5, 6, 1, 2, 6, 7, 7, 6, 6, 7, 5, 2, 0, 9, 1, 1, 9, 9, 7, 5, 8, 6, 0, 0, 4, 1, 6, 1, 1, 4, 0, 1, 1, 1, 8, 2, 5, 2, 5, 2, 2, 3, 5, 0, 4, 5, 4, 7, 2, 0, 8, 4, 4, 8, 3, 1, 2
OFFSET
0,1
LINKS
Jean-Paul Allouche, Jeffrey Shallit, and Jonathan Sondow, Summation of Series Defined by Counting Blocks of Digits, Journal of Number Theory, volume 123, number 1, March 2007, pages 133-143. Also arXiv:math/0512399 [math.NT], 2005-2006.
FORMULA
Equals (A001620 + A094640)/2, the mean of Euler's constant and alternating Euler's constant.
Equals Sum_{n>=1} A000120(n) / (2*n*(2*n+1)), where A000120 is the number of 1-bits of n in binary. [Allouche, Shallit, Sondow]
Equals Sum_{k>=1} (1/(2*k-1) - log(1+1/(2*k-1))). - Amiram Eldar, Jun 19 2023
EXAMPLE
0.40939007008601165264877449082284842...
MATHEMATICA
RealDigits[(EulerGamma + Log[4/Pi])/2, 10, 100][[1]] (* Amiram Eldar, May 27 2021 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Kevin Ryde, May 27 2021
STATUS
approved