Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 05 2021 16:42:41
%S 0,1,1,2,1,2,1,3,2,2,1,5,1,3,3,4,1,4,1,5,2,3,1,6,2,2,3,3,1,7,1,5,3,2,
%T 3,5,1,3,2,5,1,7,1,5,5,3,1,9,2,4,3,5,1,7,2,7,2,2,1,9,1,3,5,6,3,5,1,3,
%U 3,7,1,11,1,2,4,5,3,4,1,9,4,2,1,11,3,3,3,6,1,11,3,4,2,3,3,10,1,4,5,6,1,7,1,7,6
%N Number of divisors d of n for which A011772(d) < A011772(n), where A011772(n) is the smallest number m such that m(m+1)/2 is divisible by n.
%H Antti Karttunen, <a href="/A344589/b344589.txt">Table of n, a(n) for n = 1..65537</a>
%F a(n) = Sum_{d|n} [A011772(d) < A011772(n)], where [ ] is the Iverson bracket.
%F a(n) = A000005(n) - A344590(n).
%o (PARI)
%o A011772(n) = { if(n==1, return(1)); my(f=factor(if(n%2, n, 2*n)), step=vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); forstep(m=step, 2*n, step, if(m*(m-1)/2%n==0, return(m-1)); if(m*(m+1)/2%n==0, return(m))); }; \\ From A011772
%o A344589(n) = { my(x=A011772(n)); sumdiv(n,d,A011772(d)<x); };
%o (Python)
%o from itertools import combinations
%o from functools import reduce
%o from operator import mul
%o from sympy import factorint, divisors
%o from sympy.ntheory.modular import crt
%o def A011772(n):
%o plist = [p**q for p, q in factorint(2*n).items()]
%o if len(plist) == 1:
%o return n-1 if plist[0] % 2 else 2*n-1
%o return min(min(crt([m,2*n//m],[0,-1])[0],crt([2*n//m,m],[0,-1])[0]) for m in (reduce(mul, d) for l in range(1,len(plist)//2+1) for d in combinations(plist,l)))
%o def A344589(n):
%o m = A011772(n)
%o return sum(1 for d in divisors(n) if A011772(d) < m) # _Chai Wah Wu_, Jun 02 2021
%Y Cf. A000005, A011772, A344590.
%K nonn
%O 1,4
%A _Antti Karttunen_, Jun 01 2021