|
|
A344582
|
|
a(n) is the least k such that there are exactly n primes between prime(k) + 1 and floor(prime(k + 1)^2/prime(k)) (inclusive) or 0 if no such k exists.
|
|
1
|
|
|
1, 2, 4, 30, 180, 462, 890, 1532, 3385, 19871, 29040, 59257, 66762, 31545, 597311, 1448751, 1421021, 1293698, 12768473, 2279181, 147165284, 118374763, 821495413, 2618883054, 2247521689, 3145845927, 7650216016, 27357920380, 22859974504, 189924891289, 78076882908, 189573830057
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) is the least k such that A228098(k) = n.
|
|
LINKS
|
Table of n, a(n) for n=1..32.
|
|
EXAMPLE
|
a(4) = 30 as there are exactly 4 primes between prime(30) + 1 = 114 and floor(prime(31)^2/prime(30)) = 142 namely the four primes 127, 131, 137 and 139.
|
|
PROG
|
(PARI) upto(n) = {my(i, p, q, res = vector(1)); i = 1; p = 2; forprime(q = 3, oo, u = q^2\p; t = 1; forprime(r = q + 1, u, t++); if(t > #res, res = concat(res, vector(t - #res))); if(res[t] == 0, res[t] = i; ); p = q; i++; if(i > n, return(res))); }
|
|
CROSSREFS
|
Cf. A228098, A230777.
Sequence in context: A084914 A058779 A230777 * A241542 A241540 A349265
Adjacent sequences: A344579 A344580 A344581 * A344583 A344584 A344585
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David A. Corneth, May 24 2021
|
|
EXTENSIONS
|
a(24)-a(32) from Martin Ehrenstein, Jun 02 2021
|
|
STATUS
|
approved
|
|
|
|