login
A344566
T(n, k) = (-1)^(n - k)*binomial(n - 1, k - 1)*hypergeom([-(n - k)/2, -(n - k - 1)/2], [1 - n], 4). Triangle read by rows, T(n, k) for 0 <= k <= n.
0
1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 1, 1, -3, 1, 0, -1, 2, 3, -4, 1, 0, 0, -4, 2, 6, -5, 1, 0, 1, 2, -9, 0, 10, -6, 1, 0, -1, 3, 9, -15, -5, 15, -7, 1, 0, 0, -6, 3, 24, -20, -14, 21, -8, 1, 0, 1, 3, -18, -6, 49, -21, -28, 28, -9, 1
OFFSET
0,9
COMMENTS
The inverse of the Riordan array for directed animals A122896. Without the first column (1, 0, 0, ...) the inverse of the Motzkin triangle A064189.
FORMULA
Riordan_array (1, x / (1 + x + x^2)).
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, -1, 1;
[3] 0, 0, -2, 1;
[4] 0, 1, 1, -3, 1;
[5] 0, -1, 2, 3, -4, 1;
[6] 0, 0, -4, 2, 6, -5, 1;
[7] 0, 1, 2, -9, 0, 10, -6, 1;
[8] 0, -1, 3, 9, -15, -5, 15, -7, 1;
[9] 0, 0, -6, 3, 24, -20, -14, 21, -8, 1.
MAPLE
T := (n, k) -> (-1)^(n-k)*binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], 4): seq(seq(simplify(T(n, k)), k=0..n), n = 0..10);
PROG
(SageMath) # uses[riordan_array from A256893]
riordan_array(1, x / (1 + x + x^2), 10)
CROSSREFS
A117569 (row sums).
Sequence in context: A137560 A201093 A131255 * A198295 A221857 A133607
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, May 23 2021
STATUS
approved