login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = [x^n] -3/(2*x - 1)^5.
1

%I #3 May 29 2021 05:19:53

%S 3,30,180,840,3360,12096,40320,126720,380160,1098240,3075072,8386560,

%T 22364160,58490880,150405120,381026304,952565760,2353397760,

%U 5752750080,13927710720,33426505728,79586918400,188114534400,441660211200,1030540492800,2390853943296

%N a(n) = [x^n] -3/(2*x - 1)^5.

%F a(n) = 2*(n + 4)*a(n - 1) / n for n >= 2.

%F a(n) = 2^(n - 3)*(n + 1)*(n + 2)*(n + 3)*(n + 4).

%F a(n) = n! * [x^n] (2*x^4 + 16*x^3 + 36*x^2 + 24*x + 3)*exp(2*x).

%F a(n) ~ 2^(n - 3) * n^4.

%p a := n -> 2^(n - 3)*(n + 1)*(n + 2)*(n + 3)*(n + 4): seq(a(n), n = 0..25);

%Y Row sums of A344565.

%K nonn

%O 0,1

%A _Peter Luschny_, May 29 2021