%I #6 Jun 24 2021 21:38:04
%S 97,157,233,257,293,307,331,337,359,367,389,397,409,439,449,479,487,
%T 499,503,563,607,613,631,653,677,683,691,709,727,743,751,761,773,853,
%U 863,887,907,911,929,937,967,971,983,1013,1069,1087,1117,1181,1187,1193,1201
%N Isolated single primes enclosed by four composites on square spiral board of odd numbers.
%H Ya-Ping Lu, <a href="/A344481/a344481.pdf">Illustration of isolated single primes on square spiral board</a>
%e 3 is not a term because two of the four neighbors (1, 5, 17 and 21) are primes.
%e 97 is a term because 97 is a prime and all four neighbors (51, 95, 99 and 159) are composites (see the illustration in Links).
%o (Python)
%o from sympy import prime, isprime; from math import sqrt, ceil
%o def neib(m):
%o n = int(ceil((sqrt(m)+1.0)/2.0)); L = [m,m,m,m]
%o z1=4*n*n-12*n+10;z2=4*n*n-10*n+7;z3=4*n*n-8*n+5;z4=4*n*n-6*n+3;z5=4*n*n-4*n+1
%o L[0]+=1 if m<z2 else 8*n-5 if m<=z3 else -1 if m<=z4 else -8*n+9
%o L[1]+=-1 if m==z1 else -8*n+15 if m<z2 else 1 if m<z3 else 8*n-3 if m<=z4 else -1
%o L[2]+=8*n-9 if m==z1 else -1 if m<=z2 else -8*n+13 if m<z3 else i if m<z4 else 8*n-1
%o L[3]+=8*n-7 if m<=z2 else -1 if m<=z3 else -8*n+11 if m<z4 else 1
%o return L
%o for i in range(2, 200):
%o p = prime(i); L1 = [2*neib(int((p+1)/2))[j]-1 for j in range(4)]
%o if sum(isprime(k) for k in L1) == 0: print(p)
%Y Cf. A341542.
%K nonn
%O 1,1
%A _Ya-Ping Lu_, May 20 2021