login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of partitions of n into k semiprimes; triangle T(n,k), n>=0, read by rows.
12

%I #26 Aug 19 2021 04:47:02

%S 1,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,1,1,0,0,0,1,1,0,0,1,0,1,1,1,0,1,1,0,

%T 0,1,1,1,0,0,0,1,0,0,2,2,1,0,0,2,1,0,0,2,1,1,1,0,1,1,1,1,0,1,0,3,2,1,

%U 0,0,1,2,1,0,0,2,3,2,1,1,0,1,2,2,1,1,0,1,1,2,3,2,1,0,0,1,3,3,1,0,0,2,3,4,2,1,1

%N Number T(n,k) of partitions of n into k semiprimes; triangle T(n,k), n>=0, read by rows.

%C T(n,k) is defined for all n,k >= 0. The triangle contains in each row n only the terms for k=0 and then up to the last positive T(n,k) (if it exists).

%H Alois P. Heinz, <a href="/A344447/b344447.txt">Rows n = 0..500, flattened</a>

%F T(n,k) = [x^n y^k] 1/Product_{j>=1} (1-y*x^A001358(j)).

%F Sum_{k>0} k * T(n,k) = A281617(n).

%e Triangle T(n,k) begins:

%e 1 ;

%e 0 ;

%e 0 ;

%e 0 ;

%e 0, 1 ;

%e 0 ;

%e 0, 1 ;

%e 0 ;

%e 0, 0, 1 ;

%e 0, 1 ;

%e 0, 1, 1 ;

%e 0 ;

%e 0, 0, 1, 1 ;

%e 0, 0, 1 ;

%e 0, 1, 1, 1 ;

%e 0, 1, 1 ;

%e 0, 0, 1, 1, 1 ;

%e 0, 0, 0, 1 ;

%e 0, 0, 2, 2, 1 ;

%e 0, 0, 2, 1 ;

%e 0, 0, 2, 1, 1, 1 ;

%e ...

%p h:= proc(n) option remember; `if`(n=0, 0,

%p `if`(numtheory[bigomega](n)=2, n, h(n-1)))

%p end:

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p `if`(i>n, 0, expand(x*b(n-i, h(min(n-i, i)))))+b(n, h(i-1))))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b(n, h(n))):

%p seq(T(n), n=0..32);

%t h[n_] := h[n] = If[n == 0, 0,

%t If[PrimeOmega[n] == 2, n, h[n-1]]];

%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,

%t If[i > n, 0, Expand[x*b[n-i, h[Min[n-i, i]]]]] + b[n, h[i-1]]]];

%t T[n_] := Table[Coefficient[#, x, i], {i, 0, Max[0, Exponent[#, x]]}]&[b[n, h[n]]];

%t Table[T[n], {n, 0, 32}] // Flatten (* _Jean-François Alcover_, Aug 19 2021, after _Alois P. Heinz_ *)

%Y Columns k=0-10 give: A000007, A064911, A072931, A344446, A340756, A344245, A344246, A344254, A344255, A344256, A344257.

%Y Row sums give A101048.

%Y T(4n,n) gives A000012.

%Y Cf. A001358, A117278, A281617.

%K nonn,tabf

%O 0,45

%A _Alois P. Heinz_, May 19 2021