login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of palindromic factorizations of n.
2

%I #9 May 23 2021 00:20:08

%S 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,4,1,1,

%T 1,5,1,1,1,2,1,1,1,2,2,1,1,4,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,7,1,1,1,2,

%U 1,1,1,5,1,1,2,2,1,1,1,4,4,1,1,2,1,1,1

%N Number of palindromic factorizations of n.

%C A palindrome is a sequence that is the same whether it is read forward or in reverse. A palindromic factorization of n is a finite multiset of positive integers > 1 with product n that can be permuted into a palindrome.

%F a(2^n) = A025065(n).

%F a(n) = A057567(A000188(n)). - _Andrew Howroyd_, May 22 2021

%e The palindromic factorizations for n = 2, 4, 16, 36, 64, 144:

%e (2) (4) (16) (36) (64) (144)

%e (2*2) (4*4) (6*6) (8*8) (12*12)

%e (2*2*4) (2*2*9) (4*4*4) (4*4*9)

%e (2*2*2*2) (3*3*4) (2*2*16) (4*6*6)

%e (2*2*3*3) (2*2*4*4) (2*2*36)

%e (2*2*2*2*4) (3*3*16)

%e (2*2*2*2*2*2) (2*2*6*6)

%e (3*3*4*4)

%e (2*2*2*2*9)

%e (2*2*3*3*4)

%e (2*2*2*2*3*3)

%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];

%t palQ[y_]:=Select[Permutations[y],#==Reverse[#]&]!={};

%t Table[Length[Select[facs[n],palQ]],{n,50}]

%Y Positions of 1's are A005117.

%Y The case of palindromic compositions is A016116.

%Y The additive version (palindromic partitions) is A025065.

%Y The case of palindromic prime signature is A242414.

%Y The case of palindromic plane trees is A319436.

%Y A001055 counts factorizations.

%Y A229153 ranks non-palindromic partitions.

%Y A265640 ranks palindromic partitions.

%Y Cf. A000041, A000070, A000188, A004526, A030229, A056503, A057567, A082293, A344414.

%K nonn

%O 1,4

%A _Gus Wiseman_, May 22 2021