login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344403
a(n) = Sum_{d|n} d * floor(n/d^2).
2
1, 2, 3, 6, 5, 8, 7, 12, 12, 14, 11, 21, 13, 20, 18, 28, 17, 32, 19, 34, 27, 32, 23, 46, 30, 38, 36, 46, 29, 58, 31, 56, 42, 50, 40, 80, 37, 56, 51, 73, 41, 80, 43, 74, 65, 68, 47, 105, 56, 84, 66, 90, 53, 104, 65, 103, 75, 86, 59, 136, 61, 92, 91, 120, 75, 125, 67, 118, 90
OFFSET
1,2
COMMENTS
If p is prime, a(p) = Sum_{d|p} d * floor(p/d^2) = 1*p + p*0 = p.
EXAMPLE
a(6) = 8; Sum_{d|6} d * floor(6/d^2) = 1*6 + 2*1 + 3*0 + 6*0 = 8.
MATHEMATICA
Table[Sum[(1 - Ceiling[n/k] + Floor[n/k]) k*Floor[n/k^2], {k, n}], {n, 100}]
PROG
(PARI) a(n) = sumdiv(n, d, d*(n\d^2)); \\ Michel Marcus, May 17 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 16 2021
STATUS
approved