Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 26 2021 05:21:38
%S 1,0,1,0,1,1,2,1,2,1,4,3,5,3,5,5,8,8,10,8,13,13,18,17,20,19,25,28,33,
%T 33,38,40,50,52,59,63,71,75,86,94,105,110,124,131,150,159,174,189,205,
%U 217,242,264,288,303,327,354,388,414,443,476,511,547,594,641
%N Number of partitions of n into 10 semiprime parts.
%H Alois P. Heinz, <a href="/A344257/b344257.txt">Table of n, a(n) for n = 40..10000</a>
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} [Omega(r) = Omega(q) = Omega(p) = Omega(o) = Omega(m) = Omega(l) = Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k-l-m-o-p-q-r) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
%F a(n) = [x^n y^10] 1/Product_{j>=1} (1-y*x^A001358(j)). - _Alois P. Heinz_, May 19 2021
%p h:= proc(n) option remember; `if`(n=0, 0,
%p `if`(numtheory[bigomega](n)=2, n, h(n-1)))
%p end:
%p b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
%p `if`(i>n, 0, x*b(n-i, h(min(n-i, i))))+b(n, h(i-1)))), x, 11)
%p end:
%p a:= n-> coeff(b(n, h(n)), x, 10):
%p seq(a(n), n=40..120); # _Alois P. Heinz_, May 26 2021
%Y Cf. A001222 (Omega), A001358.
%Y Column k=10 of A344447.
%K nonn
%O 40,7
%A _Wesley Ivan Hurt_, May 13 2021
%E a(83)-a(103) from _Alois P. Heinz_, May 18 2021