

A344240


Numbers that are the sum of three fourth powers in exactly three ways.


6



811538, 1733522, 2798978, 3750578, 4614722, 6573938, 7303842, 8878898, 12771458, 12984608, 13760258, 14677362, 15601698, 16196193, 17868242, 21556178, 22349522, 25190802, 25589858, 27736352, 29969282, 41532498, 44048498, 44783648, 45182018, 50944418, 54894242, 57052562, 59165442, 60009248
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Differs from A344239 at term 6 because 5978882 = 3^4 + 40^4 + 43^4 = 8^4 + 37^4 + 45^4 = 15^4 + 32^4 + 47^4 = 23^4 + 25^4 + 48^4


LINKS

David Consiglio, Jr., Table of n, a(n) for n = 1..5129


EXAMPLE

2798978 is a member of this sequence because 2798978 = 6^4 + 31^4 + 37^4 = 9^4 + 29^4 + 38^4 = 13^4 + 26^4 + 39^4


PROG

(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 50)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 3])
for x in range(len(rets)):
print(rets[x])


CROSSREFS

Cf. A025397, A344192, A344239, A344242, A344278.
Sequence in context: A083617 A343082 A344239 * A238522 A210060 A237790
Adjacent sequences: A344237 A344238 A344239 * A344241 A344242 A344243


KEYWORD

nonn


AUTHOR

David Consiglio, Jr., May 12 2021


STATUS

approved



