login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} tau(gcd(k,n)^n), where tau(n) is the number of divisors of n.
7

%I #22 May 16 2021 08:06:44

%S 1,4,6,16,10,72,14,64,45,180,22,600,26,336,360,256,34,1620,38,1600,

%T 672,792,46,4752,175,1092,378,3080,58,36960,62,1024,1584,1836,1680,

%U 17136,74,2280,2184,12960,82,97020,86,7480,9450,3312,94,37536,441,16900,3672,10400,106,40824,3960,25200

%N a(n) = Sum_{k=1..n} tau(gcd(k,n)^n), where tau(n) is the number of divisors of n.

%H Seiichi Manyama, <a href="/A344223/b344223.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = n * A344226(n).

%F a(n) = Sum_{d|n} phi(n/d) * tau(d^n).

%F a(n) = n * Sum_{d|n} n^omega(d) / d.

%F If p is prime, a(p) = 2*p.

%t Table[Sum[DivisorSigma[0,GCD[k,n]^n],{k,n}],{n,100}] (* _Giorgos Kalogeropoulos_, May 13 2021 *)

%o (PARI) a(n) = sum(k=1, n, numdiv(gcd(k, n)^n));

%o (PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d^n));

%o (PARI) a(n) = n*sumdiv(n, d, n^omega(d)/d);

%Y Cf. A000203, A332517, A344221, A344222, A344224, A344225, A344226.

%K nonn

%O 1,2

%A _Seiichi Manyama_, May 12 2021