login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n!*((n+1)/2 + 2*Sum_{k=2..n-1}(n-k)/(k+1)).
3

%I #35 Jan 17 2024 10:34:42

%S 1,3,16,104,768,6336,57888,581472,6379200,75977280,977045760,

%T 13499930880,199537067520,3142504512000,52546707763200,

%U 929908914278400,17366044153651200,341336836618444800,7044417438363648000

%N a(n) = n!*((n+1)/2 + 2*Sum_{k=2..n-1}(n-k)/(k+1)).

%C Conjecture: a(n) is the number of linear intervals in the weak order on the symmetric group S_n. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to a(7) = 57888.

%H Clément Chenevière, <a href="https://theses.hal.science/tel-04255439">Enumerative study of intervals in lattices of Tamari type</a>, Ph. D. thesis, Univ. Strasbourg (France), Ruhr-Univ. Bochum (Germany), HAL tel-04255439 [math.CO], 2024. See p. 145.

%F From _Peter Luschny_, May 13 2021: (Start)

%F a(n) = (1/2) * n! * (4 * (n + 1) * H(n) - 9*n + 3), where H(n) are the harmonic numbers H(n) = A001008(n)/A002805(n).

%F a(n) = n! * [x^n] (3 - 8*x - 4*log(1 - x))/(2*(x - 1)^2).

%F a(n) = ((2*n^2 - 5*n - 1)*a(n-1) - (n^3 - 3*n^2 + 2*n)*a(n-2))/(n - 3) for n >= 4. (End)

%e For S_3, among the 17 intervals in the hexagon-shaped lattice, only the full lattice is not linear.

%p a := n -> (1/2)*n!*(4*(n + 1)*harmonic(n) - 9*n + 3):

%p # Or:

%p egf := (3 - 8*x - 4*ln(1 - x))/(2*(x - 1)^2):

%p ser := series(egf, x, 24): a := n -> n!*coeff(ser, x, n):

%p seq(a(n), n=1..19); # _Peter Luschny_, May 13 2021

%t Join[{1}, RecurrenceTable[{(n - 3) a[n] == (2 n^2 - 5 n - 1) a[n - 1] - (n^3 - 3 n^2 + 2 n) a[n - 2], a[2] == 3, a[3] == 16}, a, {n, 2, 19}]] (* _Peter Luschny_, May 13 2021 *)

%o (Sage)

%o def a(n):

%o return factorial(n)*((n+1)/2+2*sum((n-k)/(k+1) for k in range(2, n)))

%o (PARI) a(n) = n!*((n+1)/2+2*sum(k=2, n-1, (n-k)/(k+1))); \\ _Michel Marcus_, May 13 2021

%Y Cf. A344136, A344191, A344228 for similar sequences.

%Y Cf. A007767 for all intervals in the weak order on S_n.

%Y Cf. A001008, A002805.

%K nonn

%O 1,2

%A _F. Chapoton_, May 13 2021