login
A344196
Numbers that are the sum of six fifth powers in ten or more ways.
5
55302546200, 89999127392, 96110537743, 104484239200, 120492759200, 121258798144, 127794946400, 133364991375, 135030535200, 136156575744, 151305014432, 155434423925, 174388570400, 177099008000, 179272687000, 180336745600, 182844944832, 184948721056, 187873845500
OFFSET
1,1
LINKS
EXAMPLE
89999127392 = 4^5 + 36^5 + 39^5 + 40^5 + 90^5 + 153^5
= 8^5 + 21^5 + 90^5 + 109^5 + 119^5 + 135^5
= 8^5 + 28^5 + 98^5 + 102^5 + 104^5 + 142^5
= 10^5 + 38^5 + 74^5 + 102^5 + 118^5 + 140^5
= 13^5 + 51^5 + 64^5 + 98^5 + 112^5 + 144^5
= 18^5 + 44^5 + 66^5 + 98^5 + 112^5 + 144^5
= 18^5 + 52^5 + 72^5 + 78^5 + 118^5 + 144^5
= 28^5 + 60^5 + 63^5 + 65^5 + 124^5 + 142^5
= 36^5 + 53^5 + 62^5 + 63^5 + 129^5 + 139^5
= 39^5 + 41^5 + 64^5 + 91^5 + 98^5 + 149^5
so 89999127392 is a term.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved