The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A344188 Numbers that are the sum of three fourth powers in exactly one way 9
 3, 18, 33, 48, 83, 98, 113, 163, 178, 243, 258, 273, 288, 338, 353, 418, 513, 528, 593, 627, 642, 657, 707, 722, 768, 787, 882, 897, 962, 1137, 1251, 1266, 1298, 1313, 1328, 1331, 1378, 1393, 1458, 1506, 1553, 1568, 1633, 1808, 1875, 1922, 1937, 2002, 2177, 2403, 2418, 2433, 2483, 2498, 2546, 2563, 2593, 2608, 2658 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Differs from A003337 and A047714 at term 60 because 2673 = 2^4 + 4^4 + 7^4 = 3^4 + 6^4 + 6^4, see A309762. LINKS David Consiglio, Jr., Table of n, a(n) for n = 1..20000 EXAMPLE 33 is a member of this sequence because 33 = 1^4 + 2^4 + 2^4 PROG (Python) from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 50)] for pos in cwr(power_terms, 3):     tot = sum(pos)     keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 1]) for x in range(len(rets)):     print(rets[x]) CROSSREFS Cf. A003337, A025395, A344187, A344189, A344192, A344641. Sequence in context: A161443 A003337 A047714 * A204192 A108169 A063116 Adjacent sequences:  A344185 A344186 A344187 * A344189 A344190 A344191 KEYWORD nonn AUTHOR David Consiglio, Jr., May 11 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 02:41 EDT 2021. Contains 347609 sequences. (Running on oeis4.)