login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344127
Primes p such that (p mod s) and (p mod t) are consecutive primes, where s is the sum of the digits of p and t is the product of the digits of p.
1
23, 29, 313, 397, 431, 661, 941, 1129, 1193, 1223, 1277, 1613, 2621, 2791, 3461, 4111, 4159, 12641, 12911, 14419, 15271, 19211, 21611, 21773, 22613, 26731, 29819, 31181, 31511, 41381, 61211, 74611, 111191, 115811, 121181, 121727, 141161, 141221, 141269, 145513, 157523, 171713, 173141, 173891
OFFSET
1,1
COMMENTS
Since p mod 0 is not defined, the digit 0 is not allowed.
LINKS
EXAMPLE
a(3) = 313 is a term because with s = 3+1+3 = 7 and t = 3*1*3 = 9, 313 mod 7 = 5 and 313 mod 9 = 7 are consecutive primes.
MAPLE
filter:= proc(p) local L, s, t, q;
L:= convert(p, base, 10);
s:= convert(L, `+`);
t:= convert(L, `*`);
if t = 0 then return false fi;
q:= p mod s;
isprime(q) and (p mod t) = nextprime(q)
end proc:
select(filter, [seq(ithprime(i), i=1..20000)]);
PROG
(PARI) isok(p) = if (isprime(p), my(d=digits(p)); vecmin(d) && isprime(q=(p%vecsum(d))) && isprime(r=(p%vecprod(d))) && (nextprime(q+1)==r)); \\ Michel Marcus, May 10 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, May 09 2021
STATUS
approved