Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Aug 24 2022 14:38:21
%S 1,3,14,7,58,506,15,242,4060,65512,31,994,32618,1048336,33554312,63,
%T 4034,261604,16775656,1073740024,68719476016,127,16258,2095346,
%U 268427056,34359721568,4398046495984,562949953416272,255,65282,16771420,4294926472,1099511501776,281474976519136,72057594037786816,18446744073709511296
%N Triangle read by rows: T(n,k) is the number of relations from an n-element set to a k-element set that are not onto functions.
%H Michael De Vlieger, <a href="/A344116/b344116.txt">Table of n, a(n) for n = 1..1275</a> (rows n = 1..50, flattened)
%H Mohammad K. Azarian, <a href="https://doi.org/10.12988/imf.2022.912321">Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions</a>, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141.
%F T(n,k) = 2^(n*k) - k!*Stirling2(n,k).
%F T(n,k) = A344110(n,k) - A131689(n,k).
%e For T(2,2), the number of relations is 2^4 and the number of onto functions is 2, so 2^4 - 2 = 14.
%e Triangle T(n,k) begins:
%e 1
%e 3 14
%e 7 58 506
%e 15 242 4060 65512
%e 31 994 32618 1048336 33554312
%t TableForm[Table[2^(n*k) - Sum[Binomial[k, k - i] (k - i)^n*(-1)^i, {i, 0, k}], {n, 5}, {k, n}]]
%o (PARI) T(n,k) = 2^(n*k) - k!*stirling(n, k, 2); \\ _Michel Marcus_, Jun 26 2021
%Y Cf. A000312, A002416, A036679, A101030, A131689, A199656, A344110, A344112, A344113, A344115.
%K easy,nonn,tabl
%O 1,2
%A _Mohammad K. Azarian_, Jun 07 2021