login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*|Lah(n, k)|. Inverse binomial convolution of the unsigned Lah numbers A271703.
2

%I #7 May 10 2021 07:38:32

%S 1,1,-3,1,73,-699,3001,24697,-783999,10946233,-80958779,-656003919,

%T 40097528857,-944102982419,14449693290033,-81180376526759,

%U -4110744092532479,203618771909117937,-5868277577182238579,117997016943575159713,-1055340561026036009559,-45279878749358024400299

%N a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*|Lah(n, k)|. Inverse binomial convolution of the unsigned Lah numbers A271703.

%F a(n) = (-1)^(n-1)*n*n!*hypergeom([1 - n, 1 - n], [2, 2], -1) for n >= 1.

%p aList := proc(len) local lah;

%p lah := (n, k) -> `if`(n = k, 1, binomial(n-1, k-1)*n!/k!):

%p seq(add((-1)^(n-k)*binomial(n, k)*lah(n, k), k = 0..n), n = 0..len-1) end:

%p print( aList(22) );

%t a[n_] := (-1)^(n-1) n n! HypergeometricPFQ[{1 - n, 1 - n}, {2, 2}, -1]; a[0] := 1;

%t Table[a[n], {n, 0, 20}]

%Y Cf. A271703, A111596, A344050.

%K sign

%O 0,3

%A _Peter Luschny_, May 10 2021