login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n, k) = n! * [x^n] exp(k * x/(1 - x))/(1 - x). Triangle read by rows, T(n, k) for 0 <= k <= n.
3

%I #18 May 09 2021 08:04:25

%S 1,1,2,2,7,14,6,34,86,168,24,209,648,1473,2840,120,1546,5752,14988,

%T 32344,61870,720,13327,58576,173007,414160,866695,1649232,5040,130922,

%U 671568,2228544,5876336,13373190,27422352,51988748

%N T(n, k) = n! * [x^n] exp(k * x/(1 - x))/(1 - x). Triangle read by rows, T(n, k) for 0 <= k <= n.

%F T(n, k) = (-1)^n*U(-n, 1, -k), where U is the Kummer U function.

%F T(n, k) = n! * L(n, -k), where L is the Laguerre polynomial function.

%F T(n, k) = n! * Sum_{j=0..n} binomial(n, j) * k^j / j!.

%e Triangle starts:

%e [0] 1;

%e [1] 1, 2;

%e [2] 2, 7, 14;

%e [3] 6, 34, 86, 168;

%e [4] 24, 209, 648, 1473, 2840;

%e [5] 120, 1546, 5752, 14988, 32344, 61870;

%e [6] 720, 13327, 58576, 173007, 414160, 866695, 1649232;

%e [7] 5040, 130922, 671568, 2228544, 5876336, 13373190, 27422352, 51988748;

%e .

%e Array whose upward read antidiagonals are the rows of the triangle.

%e n\k 0 1 2 3 4 5

%e --------------------------------------------------------------------

%e [0] 1, 2, 14, 168, 2840, 61870, ...

%e [1] 1, 7, 86, 1473, 32344, 866695, ...

%e [2] 2, 34, 648, 14988, 414160, 13373190, ...

%e [3] 6, 209, 5752, 173007, 5876336, 224995745, ...

%e [4] 24, 1546, 58576, 2228544, 91356544, 4094022230, ...

%e [5] 120, 13327, 671568, 31636449, 1542401920, 80031878175, ...

%e [6] 720, 130922, 8546432, 490102164, 28075364096, 1671426609550, ...

%p # Rows of the array:

%p A := (n, k) -> (n + k)!*LaguerreL(n + k, -k):

%p seq(print(seq(simplify(A(n, k)), k = 0..6)), n = 0..6);

%p # Columns of the array:

%p egf := n -> exp(n*x/(1-x))/(1-x): ser := n -> series(egf(n), x, 16):

%p C := (k, n) -> (n + k)!*coeff(ser(k), x, n + k):

%p seq(print(seq(C(k, n), n = 0..6)), k=0..6);

%t T[n_, k_] := (-1)^(n) HypergeometricU[-n, 1, -k];

%t Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten

%t (* Alternative: *)

%t T[n_, k_] := n ! LaguerreL[n , -k];

%t Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten

%o (SageMath) # Columns of the array:

%o def column(k, len):

%o R.<x> = PowerSeriesRing(QQ, default_prec=len+k)

%o f = exp(k * x / (1 - x)) / (1 - x)

%o return f.egf_to_ogf().list()[k:]

%o for col in (0..6): print(column(col, 8))

%o # Alternative:

%o @cached_function

%o def L(n, x):

%o if n == 0: return 1

%o if n == 1: return 1 - x

%o return (L(n-1, x) * (2*n - 1 - x) - L(n-2, x)*(n - 1)) / n

%o A344048 = lambda n, k: factorial(n)*L(n, -k)

%o print(flatten([[A344048(n, k) for k in (0..n)] for n in (0..7)]))

%o (PARI)

%o T(n, k) = n! * sum(j=0, n, binomial(n, j) * k^j / j!)

%o for(n=0, 9, for(k=0, n, print(T(n, k))))

%Y T(n, n) = A277373(n). T(2*n, n) = A344049(n). Row sums are A343849.

%Y Cf. A343847.

%K nonn,tabl

%O 0,3

%A _Peter Luschny_, May 08 2021