Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 19 2021 16:21:07
%S 1765,1980,2043,2104,2195,2250,2449,2486,2491,2493,2547,2584,2592,
%T 2738,2745,2764,2817,2888,2915,2953,2969,3095,3096,3133,3142,3186,
%U 3188,3240,3275,3277,3310,3366,3403,3422,3459,3464,3466,3483,3529,3583,3608,3627,3653,3664,3671,3690,3697,3707,3725,3744,3746,3781
%N Numbers that are the sum of five positive cubes in exactly five ways.
%C Differs from A343989 at term 7 because 2430 = 1^3 + 2^3 + 2^3 + 6^3 + 13^3 = 1^3 + 4^3 + 5^3 + 8^3 + 12^3 = 2^3 + 2^3 + 7^3 + 7^3 + 12^3 = 2^3 + 3^3 + 4^3 + 10^3 + 11^3 = 3^3 + 6^3 + 9^3 + 9^3 + 9^3 = 4^3 + 5^3 + 8^3 + 9^3 + 10^3.
%H David Consiglio, Jr., <a href="/A343988/b343988.txt">Table of n, a(n) for n = 1..20000</a>
%e 2043 is a term because 2043 = 1^3 + 4^3 + 5^3 + 5^3 + 12^3 = 2^3 + 2^3 + 3^3 + 10^3 + 10^3 = 2^3 + 3^3 + 4^3 + 6^3 + 12^3 = 4^3 + 5^3 + 5^3 + 9^3 + 10^3 = 4^3 + 6^3 + 6^3 + 6^3 + 11^3.
%o (Python)
%o from itertools import combinations_with_replacement as cwr
%o from collections import defaultdict
%o keep = defaultdict(lambda: 0)
%o power_terms = [x**3 for x in range(1,50)]
%o for pos in cwr(power_terms,5):
%o tot = sum(pos)
%o keep[tot] += 1
%o rets = sorted([k for k,v in keep.items() if v == 5])
%o for x in range(len(rets)):
%o print(rets[x])
%Y Cf. A294739, A343986, A343989, A344035, A344359, A345175, A345767.
%K nonn
%O 1,1
%A _David Consiglio, Jr._, May 06 2021