login
Primes that are the sum of two consecutive terms of A093641.
1

%I #18 May 08 2021 06:21:56

%S 3,5,7,11,13,23,47,71,109,131,139,181,193,229,251,281,349,379,383,401,

%T 419,461,499,659,701,709,761,821,859,911,919,1021,1091,1129,1231,1259,

%U 1399,1451,1489,1549,1709,1721,1759,1811,1861,1871,1931,2029,2081,2113,2141,2179,2221,2293,2339,2399

%N Primes that are the sum of two consecutive terms of A093641.

%C Any term of A093641 that is the sum of two consecutive terms of A093641 is prime.

%H Robert Israel, <a href="/A343976/b343976.txt">Table of n, a(n) for n = 1..10000</a>

%e a(10) = 131 is a term because 131 = 64+67 = A093641(43)+ A093641(44) and is prime.

%p N:= 10^4: # for terms <= N

%p R:= seq(2^i,i=0..ilog2(N/2)):

%p p:= 3:

%p while p <= N/2 do

%p R:= R, seq(p*2^i,i=0..floor(log[2](N/2/p)));

%p p:= nextprime(p);

%p od:

%p R:= sort([R]):

%p select(isprime,R);

%Y Cf. A093641.

%K nonn

%O 1,1

%A _J. M. Bergot_ and _Robert Israel_, May 06 2021