Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 10 2024 02:16:58
%S 13896,40041,44946,52200,53136,58995,76168,82278,93339,94184,105552,
%T 110683,111168,112384,112832,113400,143424,149416,149904,161568,
%U 167616,169560,171296,175104,196776,197569,208144,216126,221696,222984,224505,235808,240813,252062,255312,262683,262781,266031
%N Numbers that are the sum of three positive cubes in four or more ways.
%H David Consiglio, Jr., <a href="/A343968/b343968.txt">Table of n, a(n) for n = 1..20000</a>
%e 44946 = 7^3 + 12^3 + 35^3
%e = 9^3 + 17^3 + 34^3
%e = 11^3 + 24^3 + 31^3
%e = 16^3 + 17^3 + 33^3
%e so 44946 is a term.
%o (Python)
%o from itertools import combinations_with_replacement as cwr
%o from collections import defaultdict
%o keep = defaultdict(lambda: 0)
%o power_terms = [x**3 for x in range(1,50)]
%o for pos in cwr(power_terms,3):
%o tot = sum(pos)
%o keep[tot] += 1
%o rets = sorted([k for k,v in keep.items() if v >= 4])
%o for x in range(len(rets)):
%o print(rets[x])
%Y Cf. A023051, A025332, A025398, A343967, A343969, A343971, A344277.
%K nonn
%O 1,1
%A _David Consiglio, Jr._, May 05 2021