login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343960
Triangle read by rows: T(n,m) = Sum_{k=1..m} (k/n)*binomial(n,m-k)*binomial(n,m), n >= m >= 1.
0
1, 1, 2, 1, 5, 4, 1, 9, 17, 8, 1, 14, 46, 49, 16, 1, 20, 100, 180, 129, 32, 1, 27, 190, 510, 603, 321, 64, 1, 35, 329, 1225, 2121, 1827, 769, 128, 1, 44, 532, 2618, 6202, 7700, 5164, 1793, 256, 1, 54, 816, 5124, 15876, 26628, 25392, 13878, 4097, 512
OFFSET
1,3
FORMULA
T(n,m) = Sum_{k=1..m} (k/n)*binomial(n,m-k)*binomial(n,m).
G.f.: N(x,y)/(1-N(x,y)), where N(x,y) is a g.f. for the Narayana numbers A001263.
T(n, m) = A001263(n, m)*hypergeom([1 - m, 2], [n - m + 2], -1). - Peter Luschny, May 06 2021
EXAMPLE
Triangle begins:
---------------------------------------------------------------------
n \ m | 1 2 3 4 5 6 7 8 9 10
-------+-------------------------------------------------------------
1 | 1
2 | 1 2
3 | 1 5 4
4 | 1 9 17 8
5 | 1 14 46 49 16
6 | 1 20 100 180 129 32
7 | 1 27 190 510 603 321 64
8 | 1 35 329 1225 2121 1827 769 128
9 | 1 44 532 2618 6202 7700 5164 1793 256
10 | 1 54 816 5124 15876 26628 25392 13878 4097 512
MATHEMATICA
T[n_, m_] := Sum[Binomial[n, m - k] * Binomial[n, m] * k/n, {k, 1, n}]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Amiram Eldar, May 06 2021 *)
PROG
(Maxima)
T(n, m):=sum((k/n)*binomial(n, m-k)*binomial(n, m), k, 1, m)
CROSSREFS
Cf. A001263.
Sequence in context: A274105 A366156 A056242 * A128718 A112358 A126351
KEYWORD
nonn,tabl
AUTHOR
Yuriy Shablya, May 05 2021
STATUS
approved