Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jul 05 2024 09:31:50
%S 1,3,4,15,6,84,8,165,55,286,12,6188,14,680,816,4845,18,33649,20,53130,
%T 2024,2300,24,2629575,351,3654,4060,237336,30,10295472,32,435897,7140,
%U 7770,8436,177232627,38,10660,11480,62891499,42,85900584,44,1906884,2118760
%N Number of ways to choose a multiset of n divisors of n.
%F a(n) = ((sigma(n), n)) = binomial(sigma(n) + n - 1, n) where sigma = A000005 and binomial = A007318.
%e The a(1) = 1 through a(5) = 6 multisets:
%e {1} {1,1} {1,1,1} {1,1,1,1} {1,1,1,1,1}
%e {1,2} {1,1,3} {1,1,1,2} {1,1,1,1,5}
%e {2,2} {1,3,3} {1,1,1,4} {1,1,1,5,5}
%e {3,3,3} {1,1,2,2} {1,1,5,5,5}
%e {1,1,2,4} {1,5,5,5,5}
%e {1,1,4,4} {5,5,5,5,5}
%e {1,2,2,2}
%e {1,2,2,4}
%e {1,2,4,4}
%e {1,4,4,4}
%e {2,2,2,2}
%e {2,2,2,4}
%e {2,2,4,4}
%e {2,4,4,4}
%e {4,4,4,4}
%t multchoo[n_,k_]:=Binomial[n+k-1,k];
%t Table[multchoo[DivisorSigma[0,n],n],{n,25}]
%o (Python)
%o from math import comb
%o from sympy import divisor_count
%o def A343935(n): return comb(divisor_count(n)+n-1,n) # _Chai Wah Wu_, Jul 05 2024
%Y Diagonal n = k of A343658.
%Y Choosing n divisors of n - 1 gives A343936.
%Y The version for chains of divisors is A343939.
%Y A000005 counts divisors.
%Y A000312 = n^n.
%Y A007318 counts k-sets of elements of {1..n}.
%Y A009998 = n^k (as an array, offset 1).
%Y A059481 counts k-multisets of elements of {1..n}.
%Y A146291 counts divisors of n with k prime factors (with multiplicity).
%Y A253249 counts nonempty chains of divisors of n.
%Y Strict chains of divisors:
%Y - A067824 counts strict chains of divisors starting with n.
%Y - A074206 counts strict chains of divisors from n to 1.
%Y - A251683 counts strict length k + 1 chains of divisors from n to 1.
%Y - A334996 counts strict length-k chains of divisors from n to 1.
%Y - A337255 counts strict length-k chains of divisors starting with n.
%Y - A337256 counts strict chains of divisors of n.
%Y - A343662 counts strict length-k chains of divisors.
%Y Cf. A062319, A143773, A163767, A176029, A327527, A334997, A343661.
%K nonn
%O 1,2
%A _Gus Wiseman_, May 05 2021