login
A343874
Array read by antidiagonals: T(n,k) is the number of n X n nonnegative integer matrices with sum of elements equal to k, up to rotational symmetry.
6
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 3, 1, 0, 1, 5, 13, 4, 1, 0, 1, 10, 43, 36, 7, 1, 0, 1, 14, 129, 204, 85, 9, 1, 0, 1, 22, 327, 980, 735, 171, 13, 1, 0, 1, 30, 761, 3876, 5145, 2109, 313, 16, 1, 0, 1, 43, 1619, 13596, 29715, 20610, 5213, 528, 21, 1
OFFSET
0,13
LINKS
EXAMPLE
Array begins:
=====================================================
n\k | 0 1 2 3 4 5 6 7
----+------------------------------------------------
0 | 1 0 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 3 5 10 14 22 30 ...
3 | 1 3 13 43 129 327 761 1619 ...
4 | 1 4 36 204 980 3876 13596 42636 ...
5 | 1 7 85 735 5145 29715 148561 657511 ...
6 | 1 9 171 2109 20610 164502 1124382 6744582 ...
7 | 1 13 313 5213 67769 717509 6457529 50732669 ...
...
PROG
(PARI)
U(n, s)={(s(1)^(n^2) + s(1)^(n%2)*(2*s(4)^(n^2\4) + s(2)^(n^2\2)))/4}
T(n, k)={polcoef(U(n, i->1/(1-x^i) + O(x*x^k)), k)}
CROSSREFS
Rows n=0..4 are A000007, A000012, A008610, A054771, A054773.
Columns k=0..1 are A000012, A004652.
Cf. A054772 (binary case), A318795, A343095, A343875.
Sequence in context: A290454 A281066 A343875 * A114795 A245669 A211648
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 06 2021
STATUS
approved