login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k = 0..n} n! * LaguerreL(n, -k).
3

%I #12 May 09 2021 12:58:25

%S 1,3,23,294,5194,116620,3175717,101696700,3745365444,155975005998,

%T 7247927859875,371803988506742,20870023274690966,1272424816703533792,

%U 83736949788656865729,5916106654032037435800,446636583718649775483144,35882981062654529341219962,3056767877633271802374850239

%N a(n) = Sum_{k = 0..n} n! * LaguerreL(n, -k).

%F a(n) = (-1)^n * Sum_{k=0..n} KummerU(-n, 1, -k).

%F a(n) = n! * Sum_{m=0..n} Sum_{j=0..n} binomial(n, j) * m^j / j!.

%F a(n) ~ exp(n/phi - n) * phi^(2*n+1) * n^n / (5^(1/4) * (1 - exp(-1/phi))), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, May 09 2021

%t a[n_] := Sum[n! LaguerreL[n, -k], {k, 0, n}];

%t Table[a[n], {n, 0, 18}]

%o (PARI)

%o a(n) = n!*sum(m=0, n, sum(j=0, n, binomial(n, j) * m^j / j!))

%o for(n=0, 18, print(a(n)))

%Y Cf. A277373, A343848, A344106, A344107.

%K nonn

%O 0,2

%A _Peter Luschny_, May 08 2021