%I #6 May 09 2021 10:05:02
%S 11,15,19,51,55,59,91,95,99,111,115,119,151,155,159,191,195,199,511,
%T 515,519,551,555,559,591,595,599,911,915,919,951,955,959,991,995,999,
%U 1111,1115,1119,1151,1155,1159,1191,1195,1199,1511,1515,1519,1551,1555,1559
%N Numbers k > 10 such that every permutation of the digits of k is congruent to 3 (mod 4).
%C Also numbers that contain only the digits 1,5,9. More general : Numbers k > 10 such that every permutation of the digits of k is congruent to r (mod m). For m = 4; r = 0 gives A343810, r = 1 gives A143967, r = 2 gives A284632, r = 3 gives this sequence.
%e 159 = 4*39 + 3, 195 = 4*48 + 3, 519 = 4*104 + 3, 591 = 4*147 + 3, 915 = 4*228 + 3, 951 = 4*237 + 3.
%t Select[Range[11, 1600], AllTrue[Permutations[IntegerDigits[#]], Mod[FromDigits[#1], 4] == 3 &] &] (* _Amiram Eldar_, Apr 30 2021 *)
%Y Cf. A143967, A284632, A343810.
%K nonn,base,easy
%O 11,1
%A _Ctibor O. Zizka_, Apr 30 2021
