Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 02 2022 03:22:15
%S 0,1,5,25,121,583,2789,13287,63149,299697,1421107,6735253,31911985,
%T 151174893,716081551,3391722505,16064368343,76084921797,360353446761,
%U 1706695118265,8083167563465,38283027343193,181313615940197,858725280497117,4067034860337649
%N Total sum of the parts in all partitions counted by A339479(n).
%H Alois P. Heinz, <a href="/A343801/b343801.txt">Table of n, a(n) for n = 0..1481</a>
%e a(3) = 25 = 3+4+6+5+7: [1,1,1], [1,1,2], [1,1,4], [1,2,2], [1,2,4].
%p b:= proc(n, t) option remember; `if`(n=0, [1, 0],
%p `if`(t=0, 0, (p-> p+[0, p[2]])(b(n, iquo(t, 2)))+
%p (p-> p+[0, p[1]])(b(n-1, t+2))))
%p end:
%p a:= n-> b(n, 1)[2]:
%p seq(a(n), n=0..30);
%t b[n_, t_] := b[n, t] = If[n == 0, {1, 0}, If[t == 0, {0, 0},
%t With[{p = b[n, Quotient[t, 2]]}, p + {0, p[[2]]}] +
%t With[{p = b[n - 1, t + 2]}, p + {0, p[[1]]}]]];
%t a[n_] := b[n, 1][[2]];
%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, May 02 2022, after _Alois P. Heinz_ *)
%Y Cf. A339479, A343799.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Apr 29 2021