login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ordered partitions of an n-set without blocks of size 8.
6

%I #9 Apr 29 2021 19:43:13

%S 1,1,3,13,75,541,4683,47293,545834,7087243,102247203,1622625313,

%T 28091415135,526854986737,10641264928479,230281282588513,

%U 5315605563021465,130369438065006551,3385496924633886429,92800464391224494215,2677652842774247060805,81123688691904430522831

%N Number of ordered partitions of an n-set without blocks of size 8.

%F E.g.f.: 1 / (2 + x^8/8! - exp(x)).

%p a:= proc(n) option remember; `if`(n=0, 1, add(

%p `if`(j=8, 0, a(n-j)*binomial(n, j)), j=1..n))

%p end:

%p seq(a(n), n=0..21); # _Alois P. Heinz_, Apr 29 2021

%t nmax = 21; CoefficientList[Series[1/(2 + x^8/8! - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!

%t a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 8, 0, Binomial[n, k] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 21}]

%Y Cf. A000670, A032032, A337058, A337059, A343668, A343787, A343788, A343789, A343790, A343792, A343793.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Apr 29 2021