Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 May 26 2021 15:33:02
%S 0,0,2,6,26,49,154,258,666,2404,3588,11096,22477,31620,61247,157725,
%T 387527,518155,1208470,2086019,2726745,5975695,9935799,20882243,
%U 54355088,86547260,108874661,171286370,214236058,333331046,1486031972,2246585402,4132451733
%N Number of partitions of prime(n) containing a prime number of primes.
%H David A. Corneth, <a href="/A343753/b343753.txt">Table of n, a(n) for n = 1..700</a>
%e a(4) = 6 because there are 6 partitions of prime(4) = 7 that contain a prime number of primes (including repetitions). These partitions are [5,2], [3,3,1], [3,2,2], [3,2,1,1], [2,2,2,1], [2,2,1,1,1].
%t nterms=20;Table[Total[Map[If[PrimeQ[Count[#, _?PrimeQ]],1,0] &,IntegerPartitions[Prime[n]]]],{n,1,nterms}]
%o (PARI) forprime(p=2, 67, my(m=0); forpart(X=p, my(j=0); for(k=1, #X, if(isprime(X[k]), j++));if(isprime(j),m++)); print1(m, ", ")) \\ _Hugo Pfoertner_, May 01 2021
%Y Cf. A000040, A058698, A235945, A343813.
%K nonn
%O 1,3
%A _Paolo Xausa_, May 01 2021