Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 06 2021 05:53:31
%S -1,19,23,-1,37,39,45,36,-1,27,17,25,15,36,19,-1,20,36,25,37,28,13,27,
%T 52,-1,39,17,38,27,26,17,23,24,37,19,-1,25,26,26,41,58,57,25,12,25,22,
%U 24,19,-1,33,48,23,41,49,23,32,32,23,30,19,17,31,27,-1,24
%N a(n) is the digit position of the first appearance of the last digit to appear in sqrt(n) (or -1 if n is a square).
%C A343739(n) is the last digit to appear in the decimal expansion of sqrt(n) (or -1 if n is a square), so a(n) is the digit position of the first appearance of the digit A343739(n) in sqrt(n).
%C (The first digit of sqrt(n) is counted as digit position 1; the decimal point is disregarded.)
%F a(100^q*n) = a(n), q > 0. - _Bernard Schott_, Jul 29 2021
%e a(2)=19 because A343739(2)=8 and the first appearance of an 8 in sqrt(2) = 1.414213562373095048... is at the 19th digit;
%e a(24)=52 because A343739(24)=0 and the first appearance of a 0 in sqrt(24) = 4.898979485566356196394568149411782783931894961313340... is at the 52nd digit.
%t Table[If[IntegerQ@ Sqrt@ n, -1, Function[s, Max@ Array[FirstPosition[s, #][[1]] &, 10, 0]]@ RealDigits[Sqrt[n], 10, 120][[1]]], {n, 65}] (* _Michael De Vlieger_, Jul 06 2021 *)
%o (Python 3.8+)
%o from math import isqrt
%o def A343740(n):
%o i = isqrt(n)
%o if i**2 == n:
%o return -1
%o m, dset, pos = n, set(), 0
%o for d in (int(s) for s in str(i)):
%o dset.add(d)
%o pos += 1
%o if len(dset) == 10:
%o return pos
%o while len(dset) < 10:
%o m *= 100
%o d = isqrt(m) % 10
%o dset.add(d)
%o pos += 1
%o return pos # _Chai Wah Wu_, Jul 07 2021
%Y Cf. A023961, A343739, A343741, A343742.
%K sign,base
%O 1,2
%A _Jon E. Schoenfield_, Jul 05 2021