Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jul 29 2023 13:55:12
%S 766,810,827,829,865,883,981,1018,1025,1044,1070,1105,1108,1142,1145,
%T 1161,1168,1226,1233,1252,1259,1289,1350,1368,1376,1424,1431,1439,
%U 1441,1457,1461,1487,1492,1494,1522,1529,1531,1538,1548,1550,1555,1568,1583,1585,1587,1590,1592,1593,1594,1609,1611,1613,1639
%N Numbers that are the sum of five positive cubes in three or more ways.
%C This sequence differs from A343705 at term 20 because 1252 = 1^3+1^3+5^3+5^3+10^3= 1^3+2^3+3^3+6^3+10^3 = 3^3+3^3+7^3+7^3+8^3 = 3^3+4^3+6^3+6^3+9^3. Thus this term is in this sequence but not A343705.
%H David Consiglio, Jr., <a href="/A343704/b343704.txt">Table of n, a(n) for n = 1..10000</a>
%e 827 is a member of this sequence because 827 = 1^3 + 4^3 + 5^3 + 5^3 + 8^3 = 2^3 + 2^3 + 5^3 + 7^3 + 7^3 = 2^3 + 3^3 + 4^3 + 6^3 + 8^3.
%t Select[Range@2000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]>2&] (* _Giorgos Kalogeropoulos_, Apr 26 2021 *)
%o (Python)
%o from itertools import combinations_with_replacement as cwr
%o from collections import defaultdict
%o keep = defaultdict(lambda: 0)
%o power_terms = [x**3 for x in range(1,50)]#n
%o for pos in cwr(power_terms,5):#m
%o tot = sum(pos)
%o keep[tot] += 1
%o rets = sorted([k for k,v in keep.items() if v >= 3])#s
%o for x in range(len(rets)):
%o print(rets[x])
%Y Cf. A025407, A343702, A343705, A344034, A344243, A344796, A345512.
%K nonn,easy
%O 1,1
%A _David Consiglio, Jr._, Apr 26 2021