login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(0) = 1; a(n) = 4 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
2

%I #7 Apr 26 2021 12:19:27

%S 1,5,51,782,15992,408814,12541010,448834728,18358297416,844755218400,

%T 43190363326992,2429044756967520,149029669269441456,

%U 9905401062535389072,709016063545908259248,54375505616232613595904,4448148376192382963462400,386619861956492109750650496,35580548688887294090357622912

%N a(0) = 1; a(n) = 4 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).

%F E.g.f.: 1 / (1 - 4*x + log(1 - x)).

%F a(n) ~ n! / ((4/c + 3 - c) * (1 - c/4)^n), where c = LambertW(4*exp(3)) = 3.2176447220005493578369738... - _Vaclav Kotesovec_, Apr 26 2021

%t a[0] = 1; a[n_] := a[n] = 4 n a[n - 1] + Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]

%t nmax = 18; CoefficientList[Series[1/(1 - 4 x + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!

%Y Cf. A007840, A052820, A053487, A343685, A343686.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Apr 26 2021