login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of an n-set without blocks of size 10.
1

%I #6 Jul 25 2023 08:39:19

%S 1,1,2,5,15,52,203,877,4140,21147,115974,678559,4213465,27643007,

%T 190884307,1382802389,10478516523,82847813908,681895648039,

%U 5830788687491,51702731250650,474630475600569,4503991075480297,44120379612630694,445584481578266277,4634070027874688433

%N Number of partitions of an n-set without blocks of size 10.

%F E.g.f.: exp(exp(x) - 1 - x^10/10!).

%F a(n) = n! * Sum_{k=0..floor(n/10)} (-1)^k * Bell(n-10*k) / ((n-10*k)! * k! * (10!)^k).

%p a:= proc(n) option remember; `if`(n=0, 1, add(`if`(

%p j=10, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Jul 25 2023

%t nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^10/10!], {x, 0, nmax}], x] Range[0, nmax]!

%t Table[n! Sum[(-1)^k BellB[n - 10 k]/((n - 10 k)! k! (10!)^k), {k, 0, Floor[n/10]}], {n, 0, 25}]

%t a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 10, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]

%Y Cf. A000110, A000296, A027344, A097514, A124504, A343664, A343665, A343666, A343667, A343668, A343669.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Apr 25 2021