%I #17 Aug 01 2021 01:56:30
%S 0,0,0,0,0,1,0,0,0,1,0,2,0,1,1,0,0,2,0,2,1,1,0,3,0,1,0,2,0,7,0,0,1,1,
%T 1,4,0,1,1,3,0,7,0,2,2,1,0,4,0,2,1,2,0,3,1,3,1,1,0,13,0,1,2,0,1,7,0,2,
%U 1,7,0,6,0,1,2,2,1,7,0,4,0,1,0,13,1,1
%N Number of non-singleton pairwise coprime nonempty sets of divisors > 1 of n.
%C First differs from A066620 at a(210) = 36, A066620(210) = 35.
%e The a(n) sets for n = 6, 12, 24, 30, 36, 60, 72, 96:
%e {2,3} {2,3} {2,3} {2,3} {2,3} {2,3} {2,3} {2,3}
%e {3,4} {3,4} {2,5} {2,9} {2,5} {2,9} {3,4}
%e {3,8} {3,5} {3,4} {3,4} {3,4} {3,8}
%e {5,6} {4,9} {3,5} {3,8} {3,16}
%e {2,15} {4,5} {4,9} {3,32}
%e {3,10} {5,6} {8,9}
%e {2,3,5} {2,15}
%e {3,10}
%e {3,20}
%e {4,15}
%e {5,12}
%e {2,3,5}
%e {3,4,5}
%t Table[Length[Select[Subsets[Rest[Divisors[n]]],CoprimeQ@@#&]],{n,100}]
%Y The case of pairs is A089233.
%Y The version with 1's, empty sets, and singletons is A225520.
%Y The version for subsets of {1..n} is A320426.
%Y The version for strict partitions is A337485.
%Y The version for compositions is A337697.
%Y The version for prime indices is A337984.
%Y The maximal case with 1's is A343652.
%Y The version with empty sets is a(n) + 1.
%Y The version with singletons is A343654(n) - 1.
%Y The version with empty sets and singletons is A343654.
%Y The version with 1's is A343655.
%Y The maximal case is A343660.
%Y A018892 counts pairwise coprime unordered pairs of divisors.
%Y A048691 counts pairwise coprime ordered pairs of divisors.
%Y A048785 counts pairwise coprime ordered triples of divisors.
%Y A051026 counts pairwise indivisible subsets of {1..n}.
%Y A100565 counts pairwise coprime unordered triples of divisors.
%Y A305713 counts pairwise coprime non-singleton strict partitions.
%Y A343659 counts maximal pairwise coprime subsets of {1..n}.
%Y Cf. A007359, A067824, A074206, A076078, A084422, A187106, A285572, A324837, A326675, A327516, A338315.
%K nonn
%O 1,12
%A _Gus Wiseman_, Apr 25 2021