Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Apr 24 2021 03:12:44
%S 0,0,0,0,6,2,6,5,5,4,2,7,4,7,1,7,5,5,5,0,6,0,0,2,5,6,9,1,9,1,0,2,4,0,
%T 8,8,4,4,6,4,7,5,7,2,0,6,7,2,6,2,0,8,2,4,1,0,6,9,5,1,6,1,4,3,6,3,6,9,
%U 7,5,1,8,8,8,4,1,3,4,3,0,7,9,7,0,3,6,1,4,6,9,3,7,9,9,5,1,9,7,3,3
%N Decimal expansion of the Prime Zeta modulo function P_{3,1}(5) = Sum 1/p^5 over primes p == 1 (mod 3).
%C The Prime Zeta modulo function at 5 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^5 = 1/7^5 + 1/13^5 + 1/19^5 + 1/31^5 + ...
%C The complementary Sum_{primes in A003627} 1/p^5 is given by P_{3,2}(5) = A085965 - 1/3^5 - (this value here) = 0.03157713571900394195603378... = A343615.
%H R. J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, p.21.
%H <a href="/index/Z#zeta_function">OEIS index to entries related to the (prime) zeta function</a>.
%e P_{3,1}(5) = 6.2655427471755506002569191024088446475720672620824106951614...*10^-5
%t With[{s=5}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from _Vaclav Kotesovec_'s code in A175645 *)
%o (PARI) s=0; forprimestep(p=1, 1e8, 3, s+=1./p^5); s \\ Naïve, for illustration: primes up to 10^N give 4N+2 (= 34 for N=8) correct digits.
%o (PARI) A343607_upto(N=100)={localprec(N+5);digits((PrimeZeta31(5)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31
%Y Cf. A086035 (P_{4,1}(5): same for p==1 (mod 4)), A175645, A343624 - A343629 (P_{3,1}(3..9): same for 1/p^s, s=3..9), A343615 (P_{3,2}(5): same for p==2 (mod 3)).
%Y Cf. A085965 (PrimeZeta(5)), A002476 (primes of the form 3k+1).
%K cons,nonn
%O 0,5
%A _M. F. Hasler_, Apr 23 2021