Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Apr 20 2021 10:09:18
%S 1,1,3,1,4,5,1,5,8,8,1,6,12,15,9,1,7,17,26,19,15,1,8,23,42,39,35,13,1,
%T 9,30,64,74,76,34,20,1,10,38,93,130,153,90,56,21,1,11,47,130,214,287,
%U 216,152,63,27,1,12,57,176,334,506,468,379,191,86,21
%N Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1 <= x_2 <= ... <= x_k <= n} gcd(x_1, x_2, ... , x_k, n).
%H Seiichi Manyama, <a href="/A343516/b343516.txt">Antidiagonals n = 1..140, flattened</a>
%F G.f. of column k: Sum_{j>=1} phi(j) * x^j/(1 - x^j)^(k+1).
%F T(n,k) = Sum_{d|n} phi(n/d) * binomial(d+k-1, k).
%e T(4,2) = gcd(1,1,4) + gcd(1,2,4) + gcd(2,2,4) + gcd(1,3,4) + gcd(2,3,4) + gcd(3,3,4) + gcd(1,4,4) + gcd(2,4,4) + gcd(3,4,4) + gcd(4,4,4) = 1 + 1 + 2 + 1 + 1 + 1 + 1 + 2 + 1 + 4 = 15.
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, 1, ...
%e 3, 4, 5, 6, 7, 8, 9, ...
%e 5, 8, 12, 17, 23, 30, 38, ...
%e 8, 15, 26, 42, 64, 93, 130, ...
%e 9, 19, 39, 74, 130, 214, 334, ...
%e 15, 35, 76, 153, 287, 506, 846, ...
%e 13, 34, 90, 216, 468, 930, 1722, ...
%t T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * Binomial[k + # - 1, k] &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Apr 18 2021 *)
%o (PARI) T(n, k) = sumdiv(n, d, eulerphi(n/d)*binomial(d+k-1, k));
%Y Columns k=1..7 give A018804, A309322, A309323, A343518, A343519, A343520, A343521.
%Y Main diagonal gives A343517.
%Y T(n,n-1) gives A343553.
%Y Cf. A343510.
%K nonn,tabl
%O 1,3
%A _Seiichi Manyama_, Apr 17 2021