%I #36 Apr 26 2021 11:55:21
%S 4,6,14,16,20,22,24,30,36,38,46,52,54,56,62,64,68,70,78,80,84,86,88,
%T 94,96,100,102,110,116,118,120,126,132,134,142,144,148,150,152,158,
%U 164,166,174,180,182,184,190,196,198,206,208,212,214,216,222,224,228
%N Positions of 4's in A003324.
%C Numbers of the form (2*k+1) * 2^e where e >= 1, k+e is even. In other words, union of {(4*m+1) * 2^(2t)} and {(4*m+3) * 2^(2t-1)}, where m >= 0, t > 0.
%C Numbers whose quaternary (base-4) expansion ends in 100...00 or 1200..00 or 3200..00. At least one trailing zero is required in the first case but not in the latter two cases.
%C There are precisely 2^(N-2) terms <= 2^N for every N >= 2.
%C Also even indices of 1 in A209615. - _Jianing Song_, Apr 24 2021
%C Complement of A343500 with respect to the even numbers. - _Jianing Song_, Apr 26 2021
%H Jianing Song, <a href="/A343501/b343501.txt">Table of n, a(n) for n = 1..16384</a> (all terms <= 2^16).
%F a(n) = 2*A338691(n). - _Hugo Pfoertner_, Apr 26 2021
%e A003324 starts with 1, 2, 3, 4, 1, 4, 3, 2, 1, 2, 3, 2, 1, 4, 3, 4, ... We have A003324(4) = A003324(6) = A003324(14) = A003324(16) = ... = 4, so this sequence starts with 4, 6, 14, 16, ...
%t okQ[n_] := If[OddQ[n], False, Module[{e = IntegerExponent[n, 2], k}, k = (n/2^e - 1)/2; EvenQ[k + e]]];
%t Select[Range[1000], okQ] (* _Jean-François Alcover_, Apr 19 2021, after PARI *)
%o (PARI) isA343501(n) = if(n%2, 0, my(e=valuation(n, 2), k=bittest(n,e+1)); !((k+e)%2))
%Y Cf. A003324, A343500 (positions of 2's), A209615, A338691.
%Y Even terms in A338692.
%K nonn,easy
%O 1,1
%A _Jianing Song_, Apr 17 2021