%I #16 Jun 29 2023 09:03:22
%S 5,2,3,2,2,3,6,8,1,4,5,3,0,9,8,3,4,9,0,8,6,4,1,6,0,8,2,3,2,9,8,9,8,9,
%T 4,4,1,8,0,6,3,9,0,8,7,0,8,8,5,5,2,4,8,1,3,9,1,8,5,8,3,5,8,3,7,6,1,0,
%U 4,7,6,5,5,2,4,5,3,3,3,4,4,5,3,4,9,2,9,5,7,7,2,4,9,5,8,5,5,0,7,2,3,5,3,4,5
%N Decimal expansion of (29/96)*sqrt(3).
%C Area of the convex hull around the terdragon fractal. As the limit of finite expansion levels, equals lim_{n->oo} (sqrt(3)/4) * A343485(n) / 3^n, where sqrt(3)/4 = A120011 is the area of a unit-side equilateral triangle.
%H Kevin Ryde, <a href="/A343486/b343486.txt">Table of n, a(n) for n = 0..10000</a>
%H Kevin Ryde, <a href="http://user42.tuxfamily.org/terdragon/index.html">Iterations of the Terdragon Curve</a>, see index "HAf".
%e 0.52322368145309834908641608232989894...
%t RealDigits[29*Sqrt[3]/96, 10, 120][[1]] (* _Amiram Eldar_, Jun 29 2023 *)
%o (PARI) my(c=29/96*quadgen(3*4)); a_vector(len) = digits(floor(c*10^len));
%Y Cf. A343485 (terdragon finite hull areas), A343487 (terdragon hull perimeter), A120011 (unit triangle area).
%K cons,easy,nonn
%O 0,1
%A _Kevin Ryde_, Apr 17 2021